KMA315 Analysis 3A: Solutions to Problems 2

1. Give and justify at least one example for each of the following:
(i) \star a sequence $\left(y_{n}\right)_{n=0}^{\infty}$ of real numbers such that $\lim _{n \rightarrow \infty} y_{n}$ does not exist while $\lim _{n \rightarrow \infty}\left|y_{n}\right|$ does exist; (2 marks)
(ii) a sequence of real numbers that diverges but has at least one convergent subsequence; and
(iii) ${ }^{\star}$ a sequence of rational numbers that converges to an irrational number (you may search the internet to find an example, though cite where you found it and make sure you understand the justification/explanation that you give), also using your example explain whether the rational numbers are a complete metric space. (3 marks)
(i) Consider $\left((-1)^{n}\right)_{n=0}^{\infty}$, it is trivially the case that $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist and that $\lim _{n \rightarrow \infty}\left|(-1)^{n}\right|=\lim _{n \rightarrow \infty} 1=1$;
(ii) Consider $\left(n^{(-1)^{n}}\right)_{n=0}^{\infty}$ (related to Problem 1(iii) of Assignment 1), it is trivially the case when considering even values of n that $\left(n^{(-1)^{n}}\right)_{n=0}^{\infty}$ diverges, and that the subsequence $\left(\frac{1}{2 n+1}\right)_{n=0}^{\infty}$ formed by considering odd values of n satisfies $\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$;
(iii) The author was unable to come across any proofs that are suitable for the breadth of material being covered in this unit, however:
(I) $y_{0}=1$ and $y_{n+1}=\frac{y_{n}+\frac{2}{y_{n}}}{2}$ for all $n \in \mathbb{N}$ converges to $\sqrt{2} \in \mathcal{C}(\mathbb{Q})$;
(II) the sequence $\left(\frac{F_{n}}{F_{n+1}}\right)_{n=0}^{\infty}$ of ratios of consecutive Fibonacci numbers converges to the golden ratio $\varphi=\frac{1+\sqrt{5}}{2} \in \mathcal{C}(\mathbb{Q})$; and
(III) $\left(\left(1+\frac{1}{n}\right)^{n}\right)_{n=1}^{\infty}$ converges to $e \in \mathcal{C}(\mathbb{Q})$ (Note: it follows from \mathbb{Q} being closed under addition and multiplication/powers that $\left(1+\frac{1}{n}\right)^{n} \in \mathbb{Q}$ for all $\left.n \in \mathbb{N}\right)$.
Note that each example is a Cauchy sequence of rational numbers that does not converge to a rational number, consequently the rational numbers are not a complete metric space.
2. ${ }^{\star}$ Let $\left(y_{n}\right)_{n=0}^{\infty}$ be the sequence of real numbers defined by $y_{0}=1$ and $y_{n+1}=\sqrt{3 y_{n}}$ for all $n \in \mathbb{N}$. Show that:
(i) $1 \leq y_{n} \leq 3$ for all $n \in \mathbb{N}$; (3 marks)
(ii) $\left(y_{n}\right)_{n=0}^{\infty}$ is monotonically increasing; (3 marks)
(iii) $\left(y_{n}\right)_{n=0}^{\infty}$ converges, and furthermore find the limit $\lim _{n \rightarrow \infty} y_{n}$. (3 marks)
(i) Consider $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ where $f(x)=\sqrt{3 x}=(3 x)^{\frac{1}{2}}$. Note that it follows from $f^{\prime}(x)=$ $\frac{3}{2}(3 x)^{-\frac{1}{2}}>0$ for all $x \in \mathbb{R}_{+}$that f is monotonically increasing. Since $1 \leq f(1)=\sqrt{3}<3$, $1<f(3)=3 \leq 3$ and f is monotonically increasing, we must have $1 \leq f(x) \leq 3$ for all $x \in[1,3]$. We note that $y_{0} \in[1,3]$ as a base case for induction. Let $m \in \mathbb{N}$ and suppose $y_{m} \in[1,3]$, then we trivially have $1 \leq f\left(y_{m}\right)=y_{m+1} \leq 3$. It follows by induction that $1 \leq y_{n} \leq 3$ for all $n \in \mathbb{N}$.
(ii) It is trivially the case that $f(x)>x$ for all $x \in[1,3]$. For each $n \in \mathbb{N}, y_{n} \in[1,3]$ and $y_{n+1}=f\left(y_{n}\right)>y_{n}$, hence $\left(y_{n}\right)_{n=0}^{\infty}$ is monotonically increasing.
(iii) Note that:
(I) $y_{1}=3^{\frac{1}{2}}$;
(II) $y_{2}=\left(3.3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(3^{\frac{3}{2}}\right)^{\frac{1}{2}}=3^{\frac{3}{4}}$;
(III) $y_{3}=\left(3.3^{\frac{3}{4}}\right)^{\frac{1}{2}}=\left(3^{\frac{7}{4}}\right)^{\frac{1}{2}}=3^{\frac{7}{8}}$.

If it is the case that $y_{m}=3^{\frac{2^{m}-1}{2^{m}}}$, then $y_{m+1}=\left(3.3^{\frac{2^{m}-1}{2^{m}}}\right)^{\frac{1}{2}}=\left(3^{\frac{2^{m+1}-1}{2^{m}}}\right)^{\frac{1}{2}}=3^{\frac{2^{m+1}-1}{2^{m+1}}}$. Hence by induction we have $y_{n}=3^{1-\frac{1}{2^{n}}}$ for all $n \in \mathbb{Z}_{+}$. Finally $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} 3^{1-\frac{1}{2^{n}}}=$ $3^{\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)}=3$.
3. ${ }^{\star}$ Prove that if $\left(a_{n}\right)_{n=0}^{\infty}$ is a monotonically decreasing sequence of real numbers and $x \in \mathbb{R}$ is a cluster point of $\left(a_{n}\right)_{n=0}^{\infty}$ then $\lim _{n \rightarrow \infty} a_{n}=x$. (3 marks)

Proof. Let:
(i) $\left(a_{n}\right)_{n=0}^{\infty}$ be a monotonically decreasing sequence of real numbers (ie. $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$); and
(ii) $x \in \mathbb{R}$ be a cluster point of $\left(a_{n}\right)_{n=0}^{\infty}$.

It follows from x being a cluster point of $\left(a_{n}\right)_{n=0}^{\infty}$ that there is a subsequence $\left(a_{n_{k}}\right)_{k=0}^{\infty}$ of $\left(a_{n}\right)_{n=0}^{\infty}$ that converges to x, ie. for each $\varepsilon>0$ there exists $K \in \mathbb{N}$ such that $a_{n_{k}} \in(x-\varepsilon, x+\varepsilon)$ for all $k \geq K$.

For such an $\varepsilon>0$ and associated $K \in \mathbb{N}$, for each $n>K$ pick any $k_{1}, k_{2} \geq K$ such that $k_{1}<n<k_{2}$. It follows from $\left(a_{n}\right)_{n=0}^{\infty}$ being monotonically decreasing that $a_{k_{1}}>a_{n}>a_{k_{2}}$. Since $a_{k_{1}}, a_{k_{2}} \in(x-\varepsilon, x+\varepsilon)$ then we must also have $a_{n} \in(x-\varepsilon, x+\varepsilon)$. Since this holds for all $n \geq K$, we have $\lim _{n \rightarrow \infty} a_{n}=x$.
4. Establish whether the following sets are: (i) open; (ii) closed; and (iii) compact:
(Note: a subset $A \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.)
(i) ${ }^{\star}(0,1]=\{r \in \mathbb{R}: 0<r \leq 1\} ;(1$ mark $)$
(ii) $\mathbb{Z}_{+}=\{1,2,3, \ldots\}$;
(iii) $\star \mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}\right\} ;(1$ mark $)$
(iv) \varnothing (the empty set);
(v) $\star \mathbb{R} ;(1$ mark $)$
(vi) the Cantor set (use the internet to work out what that is).
(i) Note $1 \in(0,1]$. Now for each $\varepsilon>0,(1,1+\varepsilon) \nsubseteq(0,1]$, hence $(1-\varepsilon, 1+\varepsilon)$ contains points from outside of $(0,1]$, therefore $(0,1]$ is not open. Furthermore 0 is obviously a limit point of $(0,1]$ with $0 \notin(0,1]$, so $(0,1]$ is also not closed, and since it is not closed $(0,1]$ is also not compact (by the Heine-Borel theorem);
(ii) As stated in the notes, the rational numbers \mathbb{Q} are dense so every real number is a limit point, which includes the irrational numbers. Consequently:
(I) \mathbb{Q} is not closed; and
(II) every open neighbourhood around each rational number contains irrational numbers, so \mathbb{Q} is also not open.

Furthermore since \mathbb{Q} is not closed, \mathbb{Q} is also not compact (by the Heine-Borel theorem).
(iii) The real numbers \mathbb{R} are trivially closed and open, and not bounded. Since \mathbb{R} is not bounded, it follows from the Heine-Borel theorem that \mathbb{R} is not compact.
5. Give and justify at least one example for each of the following:
(i) \star a sequence $\left(A_{n}\right)_{n=0}^{\infty}$ of open subsets of \mathbb{R} whose intersection $\bigcap_{n=0}^{\infty} A_{n}$ is not open; (3 marks)
(ii) a subset $A \subseteq \mathbb{R}$ such that A is a proper subset of the closure of A, ie. $A \subset \bar{A}$;
(iii) ${ }^{\star}$ subsets $A \subseteq B \subseteq \mathbb{R}$ such that A is not compact while B is compact; (1 mark)
(iv) \star a sequence $\left(I_{n}\right)_{n=0}^{\infty}$ of nested closed intervals of \mathbb{R} such that the intersection $\bigcap_{n=0}^{\infty} I_{n}$ is empty. Explain why your example does not contradict the Nested Interval Property. (3 marks)
(i) Let $A_{n}=\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right)$ for all $n \in \mathbb{Z}_{+}$. It is trivially the case that A_{n} is open for all $n \in \mathbb{Z}_{+}$ and that $\cap_{n=0}^{\infty} A_{n}=[-1,1]$. And $[-1,1]$ is not open since every open neighbourhood/ball around both -1 and 1 contain points outside $[-1,1]$;
(ii) The closure of $(0,1)$ is $[0,1]$, hence $(0,1)$ is a proper subset of its closure;
(iii) Let $A=(0,1)$ and $B=[0,1]: A$ is not compact since it is not closed; B is trivially closed and bounded, and hence compact; and $A \subseteq B \subseteq \mathbb{R}$; and
(iv) For each $n \in \mathbb{N}$ let $I_{n}=[n, \infty)$. I_{n} is closed for all $n \in \mathbb{N}$, and $I_{n+1} \subseteq I_{n}$ for all $n \in \mathbb{N}$. Hence $\left(I_{n}\right)_{n=0}^{\infty}$ is a sequence of nested closed intervals of \mathbb{R}. Now, for each $r \in \mathbb{R}$, $\{n \in \mathbb{N}: n>r\}$ is non-empty and $r \notin I_{n}$ for all $n \geq r$. Hence $\cap_{n=0}^{\infty} I_{n}$ is empty as required. Note that our example does not contradict the Nested Interval Property since the Nested Interval Property concerns sequences of nested closed and bounded intervals of \mathbb{R}, whereas our intervals are clearly unbounded.

