KMA315 Analysis 3A: Solutions to Problems 2

- 1. Give and justify at least one example for each of the following:
 - (i) \star a sequence $(y_n)_{n=0}^{\infty}$ of real numbers such that $\lim_{n\to\infty} y_n$ does <u>not</u> exist while $\lim_{n\to\infty} |y_n|$ does exist; (2 marks)
 - (ii) a sequence of real numbers that diverges but has at least one convergent subsequence; and
- (iii) ★ a sequence of <u>rational</u> numbers that converges to an irrational number (you may search the internet to find an example, though cite where you found it and make sure you understand the justification/explanation that you give), also using your example explain whether the rational numbers are a complete metric space. (3 marks)
- (i) Consider $((-1)^n)_{n=0}^{\infty}$, it is trivially the case that $\lim_{n\to\infty}(-1)^n$ does not exist and that $\lim_{n\to\infty}|(-1)^n| = \lim_{n\to\infty}1 = 1;$
- (ii) Consider $(n^{(-1)^n})_{n=0}^{\infty}$ (related to Problem 1(iii) of Assignment 1), it is trivially the case when considering even values of n that $(n^{(-1)^n})_{n=0}^{\infty}$ diverges, and that the subsequence $(\frac{1}{2n+1})_{n=0}^{\infty}$ formed by considering odd values of n satisfies $\lim_{n\to\infty} \frac{1}{2n+1} = 0$;
- (iii) The author was unable to come across any proofs that are suitable for the breadth of material being covered in this unit, however:
 - (I) $y_0 = 1$ and $y_{n+1} = \frac{y_n + \frac{2}{y_n}}{2}$ for all $n \in \mathbb{N}$ converges to $\sqrt{2} \in \mathcal{C}(\mathbb{Q})$;
 - (II) the sequence $\left(\frac{F_n}{F_{n+1}}\right)_{n=0}^{\infty}$ of ratios of consecutive Fibonacci numbers converges to the golden ratio $\varphi = \frac{1+\sqrt{5}}{2} \in \mathcal{C}(\mathbb{Q})$; and
 - (III) $\left((1+\frac{1}{n})^n\right)_{n=1}^{\infty}$ converges to $e \in \mathcal{C}(\mathbb{Q})$ (Note: it follows from \mathbb{Q} being closed under addition and multiplication/powers that $(1+\frac{1}{n})^n \in \mathbb{Q}$ for all $n \in \mathbb{N}$).

Note that each example is a Cauchy sequence of rational numbers that does not converge to a rational number, consequently the rational numbers are <u>not</u> a complete metric space. 2. ★ Let $(y_n)_{n=0}^{\infty}$ be the sequence of real numbers defined by $y_0 = 1$ and $y_{n+1} = \sqrt{3y_n}$ for all $n \in \mathbb{N}$. Show that:

- (i) $1 \le y_n \le 3$ for all $n \in \mathbb{N}$; (3 marks)
- (ii) $(y_n)_{n=0}^{\infty}$ is monotonically increasing; (3 marks)
- (iii) $(y_n)_{n=0}^{\infty}$ converges, and furthermore find the limit $\lim_{n\to\infty} y_n$. (3 marks)
- (i) Consider $f : \mathbb{R}_+ \to \mathbb{R}$ where $f(x) = \sqrt{3x} = (3x)^{\frac{1}{2}}$. Note that it follows from $f'(x) = \frac{3}{2}(3x)^{-\frac{1}{2}} > 0$ for all $x \in \mathbb{R}_+$ that f is monotonically increasing. Since $1 \le f(1) = \sqrt{3} < 3$, $1 < f(3) = 3 \le 3$ and f is monotonically increasing, we must have $1 \le f(x) \le 3$ for all $x \in [1,3]$. We note that $y_0 \in [1,3]$ as a base case for induction. Let $m \in \mathbb{N}$ and suppose $y_m \in [1,3]$, then we trivially have $1 \le f(y_m) = y_{m+1} \le 3$. It follows by induction that $1 \le y_n \le 3$ for all $n \in \mathbb{N}$.
- (ii) It is trivially the case that f(x) > x for all $x \in [1,3]$. For each $n \in \mathbb{N}$, $y_n \in [1,3]$ and $y_{n+1} = f(y_n) > y_n$, hence $(y_n)_{n=0}^{\infty}$ is monotonically increasing.

(iii) Note that:

- (I) $y_1 = 3^{\frac{1}{2}};$
- (II) $y_2 = (3.3^{\frac{1}{2}})^{\frac{1}{2}} = (3^{\frac{3}{2}})^{\frac{1}{2}} = 3^{\frac{3}{4}};$
- (III) $y_3 = (3.3^{\frac{3}{4}})^{\frac{1}{2}} = (3^{\frac{7}{4}})^{\frac{1}{2}} = 3^{\frac{7}{8}}.$

If it is the case that $y_m = 3^{\frac{2^m - 1}{2^m}}$, then $y_{m+1} = (3.3^{\frac{2^m - 1}{2^m}})^{\frac{1}{2}} = (3^{\frac{2^{m+1} - 1}{2^m}})^{\frac{1}{2}} = 3^{\frac{2^{m+1} - 1}{2^{m+1}}}$. Hence by induction we have $y_n = 3^{1 - \frac{1}{2^n}}$ for all $n \in \mathbb{Z}_+$. Finally $\lim_{n \to \infty} y_n = \lim_{n \to \infty} 3^{1 - \frac{1}{2^n}} = 3^{\lim_{n \to \infty} (1 - \frac{1}{2^n})} = 3$.

3. \star Prove that if $(a_n)_{n=0}^{\infty}$ is a monotonically decreasing sequence of real numbers and $x \in \mathbb{R}$ is a cluster point of $(a_n)_{n=0}^{\infty}$ then $\lim_{n\to\infty} a_n = x$. (3 marks)

Proof. Let:

- (i) $(a_n)_{n=0}^{\infty}$ be a monotonically decreasing sequence of real numbers (i.e. $a_{n+1} < a_n$ for all $n \in \mathbb{N}$); and
- (ii) $x \in \mathbb{R}$ be a cluster point of $(a_n)_{n=0}^{\infty}$.

It follows from x being a cluster point of $(a_n)_{n=0}^{\infty}$ that there is a subsequence $(a_{n_k})_{k=0}^{\infty}$ of $(a_n)_{n=0}^{\infty}$ that converges to x, i.e. for each $\varepsilon > 0$ there exists $K \in \mathbb{N}$ such that $a_{n_k} \in (x - \varepsilon, x + \varepsilon)$ for all $k \ge K$.

For such an $\varepsilon > 0$ and associated $K \in \mathbb{N}$, for each n > K pick any $k_1, k_2 \ge K$ such that $k_1 < n < k_2$. It follows from $(a_n)_{n=0}^{\infty}$ being monotonically decreasing that $a_{k_1} > a_n > a_{k_2}$. Since $a_{k_1}, a_{k_2} \in (x - \varepsilon, x + \varepsilon)$ then we must also have $a_n \in (x - \varepsilon, x + \varepsilon)$. Since this holds for all $n \ge K$, we have $\lim_{n\to\infty} a_n = x$.

4. Establish whether the following sets are: (i) open; (ii) closed; and (iii) compact:

(*Note:* a subset $A \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.)

- (i) \star (0,1] = { $r \in \mathbb{R} : 0 < r \le 1$ }; (1 mark)
- (ii) $\mathbb{Z}_+ = \{1, 2, 3, \ldots\};$
- (iii) $\bigstar \mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z} \}; (1 \text{ mark})$
- (iv) \emptyset (the empty set);
- (v) $\star \mathbb{R}$; (1 mark)
- (vi) the Cantor set (use the internet to work out what that is).
- (i) Note $1 \in (0, 1]$. Now for each $\varepsilon > 0$, $(1, 1 + \varepsilon) \not\subseteq (0, 1]$, hence $(1 \varepsilon, 1 + \varepsilon)$ contains points from outside of (0, 1], therefore (0, 1] is <u>not</u> open. Furthermore 0 is obviously a limit point of (0, 1] with $0 \notin (0, 1]$, so (0, 1] is also not closed, and since it is <u>not</u> closed (0, 1] is also <u>not</u> compact (by the Heine-Borel theorem);
- (ii) As stated in the notes, the rational numbers \mathbb{Q} are dense so every real number is a limit point, which includes the irrational numbers. Consequently:
 - (I) \mathbb{Q} is <u>not</u> closed; and
 - (II) every open neighbourhood around each rational number contains irrational numbers, so \mathbb{Q} is also <u>not</u> open.

Furthermore since \mathbb{Q} is not closed, \mathbb{Q} is also <u>not</u> compact (by the Heine-Borel theorem).

(iii) The real numbers \mathbb{R} are trivially closed and open, and <u>not</u> bounded. Since \mathbb{R} is not bounded, it follows from the Heine-Borel theorem that \mathbb{R} is <u>not</u> compact.

- 5. Give and justify at least one example for each of the following:
 - (i) \star a sequence $(A_n)_{n=0}^{\infty}$ of open subsets of \mathbb{R} whose intersection $\bigcap_{n=0}^{\infty} A_n$ is <u>not</u> open; (3 marks)
 - (ii) a subset $A \subseteq \mathbb{R}$ such that A is a proper subset of the closure of A, ie. $A \subset \overline{A}$;
- (iii) \star subsets $A \subseteq B \subseteq \mathbb{R}$ such that A is <u>not</u> compact while B is compact; (1 mark)
- (iv) \star a sequence $(I_n)_{n=0}^{\infty}$ of nested closed intervals of \mathbb{R} such that the intersection $\bigcap_{n=0}^{\infty} I_n$ is empty. Explain why your example does not contradict the Nested Interval Property. (3 marks)
- (i) Let $A_n = (-1 \frac{1}{n}, 1 + \frac{1}{n})$ for all $n \in \mathbb{Z}_+$. It is trivially the case that A_n is open for all $n \in \mathbb{Z}_+$ and that $\bigcap_{n=0}^{\infty} A_n = [-1, 1]$. And [-1, 1] is not open since every open neighbourhood/ball around both -1 and 1 contain points outside [-1, 1];
- (ii) The closure of (0, 1) is [0, 1], hence (0, 1) is a proper subset of its closure;
- (iii) Let A = (0, 1) and B = [0, 1]: A is not compact since it is not closed; B is trivially closed and bounded, and hence compact; and $A \subseteq B \subseteq \mathbb{R}$; and
- (iv) For each $n \in \mathbb{N}$ let $I_n = [n, \infty)$. I_n is closed for all $n \in \mathbb{N}$, and $I_{n+1} \subseteq I_n$ for all $n \in \mathbb{N}$. Hence $(I_n)_{n=0}^{\infty}$ is a sequence of nested closed intervals of \mathbb{R} . Now, for each $r \in \mathbb{R}$, $\{n \in \mathbb{N} : n > r\}$ is non-empty and $r \notin I_n$ for all $n \ge r$. Hence $\bigcap_{n=0}^{\infty} I_n$ is empty as required. Note that our example does not contradict the Nested Interval Property since the Nested Interval Property concerns sequences of nested closed and bounded intervals of \mathbb{R} , whereas our intervals are clearly unbounded.